Respuesta :

Answer:

We conclude that

[tex]3x-11>7x+9\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:x<-5\:\\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:-5\right)\end{bmatrix}[/tex]

Please check the attached diagram which shows the solution on the number line.

Step-by-step explanation:

Given the inequality

[tex]3x-11>7x+9[/tex]

Add 11 to both sides

[tex]3x-11+11>7x+9+11[/tex]

Simplify

[tex]3x>7x+20[/tex]

Subtract 7 from both sides

[tex]3x-7x>7x+20-7x[/tex]

Simplify

[tex]-4x>20[/tex]

Multiply both sides by -1 (reverses the inequality)

[tex]\left(-4x\right)\left(-1\right)<20\left(-1\right)[/tex]

Simplify

[tex]4x<-20[/tex]

Divide both sides by 4

[tex]\frac{4x}{4}<\frac{-20}{4}[/tex]

Simplify

[tex]x<-5[/tex]

Therefore, we conclude that

[tex]3x-11>7x+9\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:x<-5\:\\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:-5\right)\end{bmatrix}[/tex]

Please check the attached diagram which shows the solution on the number line.

Ver imagen absor201