Respuesta :

Answer: Q(t) = 410*(5)^(2t) = 410*(5^2)^t = 410*(25)^t

Step-by-step explanation:

We start with the equation:

Q(t) = 410*(5)^(2t)

And we want to rewrite this in the form:

Q(t) = a*b^t

To do this, we need to use the property:

(a^x)^y = a^(x*y)

Using this, we can rewrite:

Q(t) = 410*(5)^(2t) = 410*(5^2)^t = 410*(25)^t

And this is the form that we wanted:

Answer:

13120(16)^t

Step-by-step explanation:

The number of views on a viral video can be modeled by the function Q(t)=820(4)^{2t+2}.Q(t)=820(4)  

2t+2

. Write an equivalent function of the form Q(t)=ab^t.Q(t)=ab  

t

.

Q(t)=

Q(t)=

\,\,820(4)^{2t+2}

820(4)  

2t+2

 

Q(t)=

Q(t)=

\,\,820\cdot\color{steelblue}{4^{2t+2}}

820⋅4  

2t+2

 

Q(t)=

Q(t)=

\,\,820\cdot\color{steelblue}{4^{2t}\cdot 4^{2}}

820⋅4  

2t

⋅4  

2

 

\small 4^a\cdot4^b \rightarrow 4^{a+b},4  

a

⋅4  

b

→4  

a+b

, but going backwards \small 4^{a+b}\rightarrow 4^a\cdot 4^b4  

a+b

→4  

a

⋅4  

b

 

Q(t)=

Q(t)=

\,\,820\cdot\color{steelblue}{4^{2}\cdot 4^{2t}}

820⋅4  

2

⋅4  

2t

 

Switch order of multiplication

Q(t)=

Q(t)=

\,\,(820\cdot\color{steelblue}{16})\cdot \color{steelblue}{4^{2t}}

(820⋅16)⋅4  

2t

 

Evaluate \color{steelblue}{4^{2}=16}4  

2

=16

Q(t)=

Q(t)=

\,\,13120(4)^{2t}

13120(4)  

2t

 

Multiply 820\cdot 16=820⋅16=1312013120

Q(t)=

Q(t)=

\,\,13120(4^{2})^{t}

13120(4  

2

)  

t

 

Since (4^a)^b\rightarrow 4^{ab},(4  

a

)  

b

→4  

ab

, we can go backwards 4^{ab}\rightarrow (4^a)^b4  

ab

→(4  

a

)  

b

 

Q(t)=

Q(t)=

\,\,13120(16)^{t}

13120(16)  

t

 

Evaluate 4^{2}=164  

2

=16