Respuesta :
Answer:
[tex]\displaystyle \frac{dh}{dt} = \frac{8}{25 \pi} \ ft/min[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtract Property of Equality
Geometry
Volume of a Cone: [tex]\displaystyle V = \frac{1}{3} \pi r^2h[/tex]
- r is radius
- h is height
Diameter: d = 2r
Calculus
Derivatives
Derivative Notation
Differentiating with respect to time
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Step-by-step explanation:
Step 1: Define
[tex]\displaystyle \frac{dV}{dt} = 2 \ ft^3/min\\b = h\\h = 5 \ ft[/tex]
Step 2: Rewrite Volume Formula
We need to rewrite the cone volume formula in terms of height h only.
Base b = diameter d of the circular base
- Define: b = d
- Substitute: b = 2r
We are given that the base of the cone is the same as the height.
- Define: b = 2r
- Substitute: h = 2r
Now solve for height.
- Divide 2 on both sides: h/2 = r
- Rewrite expression: r = h/2
Now find new volume formula.
- Define [VC]: [tex]\displaystyle V = \frac{1}{3} \pi r^2h[/tex]
- Substitute: [tex]\displaystyle V = \frac{1}{3} \pi (\frac{h}{2})^2h[/tex]
- Exponents: [tex]\displaystyle V = \frac{1}{3} \pi (\frac{h^2}{4})h[/tex]
- Multiply: [tex]\displaystyle V = \frac{1}{12} \pi h^3[/tex]
We now have the same volume formula in terms of height h only.
Step 3: Differentiate
- Basic Power Rule: [tex]\displaystyle \frac{dV}{dt} = \frac{1}{12} \pi \cdot 3 \cdot h^{3-1} \frac{dh}{dt}[/tex]
- Simplify: [tex]\displaystyle \frac{dV}{dt} = \frac{1}{4} \pi h^{2} \frac{dh}{dt}[/tex]
Step 4: Solve for height rate
- Substitute: [tex]\displaystyle 2 \ ft^3/min = \frac{1}{4} \pi (5 \ ft)^{2} \frac{dh}{dt}[/tex]
- Isolate h rate: [tex]\displaystyle \frac{2 \ ft^3/min}{\frac{1}{4} \pi (5 \ ft)^{2}} = \frac{dh}{dt}[/tex]
- Exponents: [tex]\displaystyle \frac{2 \ ft^3/min}{\frac{1}{4} \pi (25 \ ft^2)} = \frac{dh}{dt}[/tex]
- Multiply: [tex]\displaystyle \frac{2 \ ft^3/min}{\frac{25}{4} \pi \ ft^2} = \frac{dh}{dt}[/tex]
- Divide: [tex]\displaystyle \frac{8}{25 \pi} \ ft/min = \frac{dh}{dt}[/tex]
- Rewrite: [tex]\displaystyle \frac{dh}{dt} = \frac{8}{25 \pi} \ ft/min[/tex]
Here this tells us that the rate at which the height is moving at a rate of 0.101859 feet per minute.