Respuesta :

Answer:

RS = 11

Step-by-step explanation:

well from the mid-point theorem we have that

[tex]\triangle PRS \sim \triangle PNQ[/tex]

by a ratio of

[tex]1:2[/tex]

so

[tex]\frac{RS}{NQ}=\frac{1}{2}\\\\2[\frac{RS}{NQ}]=2[\frac{1}{2}]\\\\\frac{2RS}{NQ}=1\\\\NQ[\frac{2RS}{NQ}]=NQ[1]\\\\2RS=NQ[/tex]

and now we plug in

[tex]RS = 5x-39\\\\NQ = 4x-18[/tex]

[tex]2[5x-39]=4x-18\\\\10x-78=4x-18\\\\10x-4x=-18+78\\\\6x=60\\\\x=10[/tex]

so the length of RS is

[tex]RS = 5x-39\\\\RS = 5(10)-39\\\\RS=50-39\\\\RS=11[/tex]