Three forces act on a flange as shown below. Determine the magnitude of the unknown force F (in lb) such that the net force acting on the flange is a minimum.

Three forces act on a flange as shown below Determine the magnitude of the unknown force F in lb such that the net force acting on the flange is a minimum class=

Respuesta :

Answer:

The unknown force will be 18.116 lb.

Explanation:

Given that,

Three forces act on a flange as shown in figure.

The net force acting on the flange is a minimum.

[tex]\dfrac{dF_{net}}{df}=0[/tex]

We need to calculate the unknown force

Using formula of net force

[tex]\vec{F_{net}}=\vec{F_{x}}+\vec{F_{y}}[/tex]

Put the value into the formula

[tex]\vec{F_{net}}=(F\cos45+70\cos30-40)\hat{i}+(70\sin30-F\sin45)\hat{j}[/tex]

[tex]\vec{F_{net}}=(F\cos45+70\times\dfrac{\sqrt{3}}{2})\hat{i}+(70\times\dfrac{1}{2}-F\sin45)\hat{j}[/tex]

The magnitude of net force,

[tex]F_{net}=\sqrt{F_{x}^2+F_{y}^2}[/tex]

[tex]F_{net}=\sqrt{(F\times\dfrac{1}{\sqrt{2}}+60.62)^2+(35-F\times\dfrac{1}{\sqrt{2}})^2}[/tex]

[tex]F_{net}=\sqrt{F^2+(60.62)^2+121.24\times\dfrac{F}{\sqrt{2}}+(35)^2-70\times\dfrac{F}{\sqrt{2}}}[/tex]

[tex]F_{net}=\sqrt{F^2+4899.78+36.232F}[/tex]

On differentiating w.r.to F

[tex](\dfrac{dF_{net}}{dF})^2=2F+36.232[/tex]

[tex]0=2F+36.232[/tex]

[tex]F=-\dfrac{36.232}{2}[/tex]

[tex]F=-18.116\ lb[/tex]

Negative sign shows the direction of force which is downward.

Hence, The unknown force will be 18.116 lb.

Following are the solution to the given question:

Calculating the Net force on flange:

[tex]\overrightarrow{F_{net}} = ( F \cos 45^{\circ} + 70 \cos 30^{\circ} -40 ) \hat{i}+(70 \sin 30^{\circ} - F \sin 45^{\circ} )\hat{y} \\\\ \overrightarrow{F_{net}} = ( F \cos 45^{\circ} + 20.62 ) \hat{i}+(35 -F\sin 45^{\circ})\hat{y} \\\\ [/tex]

Calculating the magnitude:

[tex]= \sqrt{f_{X}^2 +f_{y}^{2}}\\\\ = \sqt{( F \cos 45^{\circ} + 20.62 )^2+(35 -F\sin 45^{\circ})^2} \\\\ = \sqt{( F^2+20.62^2+ 35^2+ 41.24 F \cos 45^{\circ} -70 F\sin 45^{\circ})}\\\\ = \sqt{( F^2+20.33F +1650.1844)} \\\\[/tex]

Differentiate the value

[tex]\to \frac{F_{net}}{df}=0 [/tex]

[tex]\to 2F-20.33=0\\\\ \to 2F=20.33\\\\ \to F=\frac{20.33}{2}\\\\ \to F= 10.165\ lb [/tex]

Learn more:

brainly.com/question/15323099

Ver imagen codiepienagoya