Respuesta :

Answer:

[tex]x = -1[/tex]

[tex]y = 3[/tex]

Step-by-step explanation:

Given

The attached table

Required

Fill in the blanks

First, we need to calculate the slope

[tex]m = \frac{y_2-y_1}{x_2-x_1}[/tex]

Where:

[tex](x_1,y_1) = (1/2,1)[/tex]

[tex](x_2,y_2) = (3,-9)[/tex]

So, we have:

[tex]m = \frac{-9-1}{3-1/2}[/tex]

[tex]m = \frac{-10}{3-0.5}[/tex]

[tex]m = \frac{-10}{2.5}[/tex]

[tex]m = -4[/tex]

Next, we calculate the equation:

[tex]y - y_2 = m(x - x_2)[/tex]

This gives:

[tex]y - (-9) = -4(x - 3)[/tex]

[tex]y +9 = -4(x - 3)[/tex]

[tex]y +9 = -4x +12[/tex]

Make y the subject:

[tex]y = -4x +12-9[/tex]

[tex]y = -4x +3[/tex]

So,

When y = 7:

We have:

[tex]y = -4x +3[/tex]

[tex]7 = -4x +3[/tex]

Collect Like Terms

[tex]4x = 3 - 7[/tex]

[tex]4x = -4[/tex]

Divide through by 4

[tex]x = -1[/tex]

When x = 0, we have:

[tex]y = -4x +3[/tex]

[tex]y = -4 * 0 + 3[/tex]

[tex]y = 0 + 3[/tex]

[tex]y = 3[/tex]