Answer:
[tex]3m^4-m^3+2m^2[/tex]
Step-by-step explanation:
Given the expression:
[tex]\frac{(-7m^4 + 15m^3-12m^2)+(3m^5-12m^4-7m^3)}{m-6} \\\\Firstly\ simplify\ the\ bracket\ should\ be\ :\\\\=\frac{-7m^4 + 15m^3-12m^2+3m^5-12m^4-7m^3}{m-6}\\\\collect\ like\ terms\ together:\\\\=\frac{3m^5-7m^4-12m^4 + 15m^3-7m^3-12m^2}{m-6}\\\\=\frac{3m^5-19m^4 + 8m^3-12m^2}{m-6}\\\\=\frac{m^2(3m^3-19m^2+8m-12)}{m-6}\\\\=\frac{m^2(m-6)(3m^2-m+2)}{m-6} \\\\=m^2(3m^2-m+2)\\\\=3m^4-m^3+2m^2[/tex]