Respuesta :

Answer:

1. UW // TX

2. VX // UY

3. UW ≅ TYYX

4. YW = [tex]\frac{1}{2}[/tex] TV

5. TX = 2 UW

6. ∠TXV ≅∠WUY

Step-by-step explanation:

The line segment joining the midpoint of two sides of a triangle is parallel to the third side and equal to half its length

In Δ XVT

∵ U is the midpoint of VT

∵ W is the midpoint of VX

∵ XT is the 3rd side of the triangle

→ By using the rule above

UW // TX ⇒ (1)

∴ UW = [tex]\frac{1}{2}[/tex] TX

→ Multiply both sides by 2

∴ 2 UW = TX

TX = 2 UW ⇒ (5)

∵ Y is the midpoint of TX

∴ TY = YX = [tex]\frac{1}{2}[/tex] TX

∵ UW = [tex]\frac{1}{2}[/tex] TX

UW ≅ TY ≅ YX ⇒ (3)

∵ U is the midpoint of VT

∵ Y is the midpoint of XT

∵ VX is the 3rd side of the triangle

→ By using the rule above

∴ UY // VX

VX // UY ⇒ (2)

∴ UY = [tex]\frac{1}{2}[/tex] VX

∵ W is the midpoint of VX

∵ Y is the midpoint of XT

∵ TV is the 3rd side of the triangle

→ By using the rule above

∴ YW // TV

YW = [tex]\frac{1}{2}[/tex] TV ⇒ (4)

2 Δs UYW and XVT

∵ UY = [tex]\frac{1}{2}[/tex] XV

∵ YW = [tex]\frac{1}{2}[/tex] VT

∵ WU = [tex]\frac{1}{2}[/tex] TX

∴ [tex]\frac{UY}{XV}[/tex] = [tex]\frac{UW}{VT}[/tex] = [tex]\frac{WU}{TX}[/tex] = [tex]\frac{1}{2}[/tex]

→ By using the SSS postulate of similarity

∠TXV ≅∠WUY ⇒ (6)