Respuesta :

Given:

An angle θ on the unit circle has a sine of [tex]\dfrac{1}{4}[/tex].

To find:

The value of cosθ.

Solution:

We have,

[tex]\sin \theta=\dfrac{1}{4}[/tex]

Since sinθ is positive, therefore, θ lies in first or second quadrant.

We know that,

[tex]\sin^2 \theta +\cos^2 \theta =1[/tex]

[tex](\dfrac{1}{4})^2+\cos^2 \theta =1[/tex]

[tex]\dfrac{1}{16}+\cos^2 \theta =1[/tex]

[tex]\cos^2 \theta =1-\dfrac{1}{16}[/tex]

Taking square root on both sides.

[tex]\cos \theta =\pm \sqrt{\dfrac{16-1}{16}}[/tex]

[tex]\cos \theta =\pm \dfrac{\sqrt{15}}{4}[/tex]

Therefore, the value of cosθ is either [tex]\dfrac{\sqrt{15}}{4}[/tex] or [tex]-\dfrac{\sqrt{15}}{4}[/tex].