Respuesta :

Answer:

[tex]m = -\frac{2}{5}[/tex] ---- slope

[tex]y = -\frac{1}{3}[/tex] --- y intercept

Step-by-step explanation:

Given

The attached table

Required

Calculate the slope and y intercept

First, we need to calculate the slope

[tex]m = \frac{y_2-y_1}{x_2-x_1}[/tex]

From the table, the following relationships exist:

[tex](x_1,y_1) = (-\frac{3}{4},-\frac{1}{30})[/tex]

[tex](x_2,y_2) = (\frac{1}{4},-\frac{13}{30})[/tex]

So, the expression for calculating slope becomes:

[tex]m = [-\frac{13}{30} - (-\frac{1}{30})] / [\frac{1}{4} - (-\frac{3}{4})][/tex]

[tex]m = [-\frac{13}{30} +\frac{1}{30}] / [\frac{1}{4} +\frac{3}{4}][/tex]

Take LCM

[tex]m = [\frac{-13+1}{30}] / [\frac{1+3}{4}][/tex]

[tex]m = [\frac{-12}{30}] / [\frac{4}{4}][/tex]

[tex]m = [\frac{-12}{30}] / 1[/tex]

[tex]m = \frac{-12}{30}[/tex]

[tex]m = \frac{-2}{5}[/tex]

[tex]m = -\frac{2}{5}[/tex]

To calculate the y intercept:

x must be 0. i.e.

[tex]x = 0[/tex]

So, we have:

[tex](x_1,y_1) = (-\frac{3}{4},-\frac{1}{30})[/tex]

[tex](x_2,y_2) = (0,y)[/tex]

[tex]m = -\frac{2}{5}[/tex]

Substitute these values in:

[tex]m = \frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]-\frac{2}{5} = [y - (-\frac{1}{30})] / [0- (-\frac{3}{4})][/tex]

[tex]-\frac{2}{5} = [y +\frac{1}{30}] / [0+\frac{3}{4}][/tex]

[tex]-\frac{2}{5} = [y +\frac{1}{30}] / [\frac{3}{4}][/tex]

Multiply through  by 3/4

[tex]-\frac{2}{5}*\frac{3}{4} = y +\frac{1}{30}[/tex]

[tex]-\frac{6}{20} = y +\frac{1}{30}[/tex]

[tex]-\frac{3}{10} = y +\frac{1}{30}[/tex]

Collect Like Terms

[tex]y = -\frac{3}{10}-\frac{1}{30}[/tex]

[tex]y = \frac{-9-1}{30}[/tex]

[tex]y = \frac{-10}{30}[/tex]

[tex]y = \frac{-1}{3}[/tex]

[tex]y = -\frac{1}{3}[/tex]

Ver imagen MrRoyal