HELP PLEASE

Consider the line y = 6x-7. Find the equation of the line that is perpendicular to this line and passes through the point (8, 3). Find the equation of the line that is parallel to this line and passes through the point (8, 3).​

Respuesta :

Answer:

perpendicular line:    y = -¹/₆ x + 4¹/₃

 parallel line:              y = 6x - 45

Step-by-step explanation:

y=m₁x+b₁   ⊥   y=m₂x+b₂   ⇔    m₁×m₂ = -1

{Two lines are perpendicular if the product of theirs slopes is equal -1}

y = 6x - 7   ⇒   m₁=6

6×m₂ = -1        ⇒    m₂ = -¹/₆

 

The line y=-¹/₆ x+b passes through point (8, 3) so the equation:

3 = -¹/₆ ×8 + b must be true

3 = -⁴/₃ + b

b = 4¹/₃

Therefore equation in  slope-intercept form:

                                                     y = -¹/₆ x + 4¹/₃

y=m₁x+b₁   ║   y=m₂x+b₂   ⇔    m₁ = m₂

{Two lines are parallel if  their slopes are equal}

y = 6x - 7   ⇒   m₁=6   ⇒   m₂=6

The line y=6x+b passes through point (8, 3) so the equation:

3 = 6×8 + b must be true

3 = 48 + b

b = -45

Therefore equation in  slope-intercept form:

                                                     y = 6x - 45