Respuesta :

Answer:

(i) (x + 3) is a factor of p(x)= x⁴ + 4x³ + 4x² + 4x + 3 and the remaining factors are (x + 1) and ( x²  +  1).

(ii) (x + 1) is not a factor of p(x)= 2x⁴ - 5x² - 2 and the remainder is -5.

Step-by-step explanation:

(i) Given;

Polynomial, p(x)= x⁴ + 4x³ + 4x² + 4x + 3

Factor, = x + 3

            x = -3

if (x + 3) is a factor of the polynomial, then p(-3) = 0

p(-3) = (-3)⁴ + 4(-3)³ + 4(-3)² + 4(-3) + 3

        = 81 -108 + 36 - 12 + 3

        = 0

(x + 3) is a factor of the given polynomial and the remainder is 0.

The remaining factors can be obtained as follows;

               x³  +  x² + x + 1

            --------------------------------

x + 3 √x⁴ + 4x³ + 4x² + 4x + 3

        - ( x⁴  + 3x³)

          --------------------------------

                    x³ +  4x² + 4x + 3

                   -(x³  + 3x²)

          ----------------------------------

                            x² + 4x + 3

                          -(x²  + 3x)

         ---------------------------------------

                                     x + 3

                                   -(x + 3)

           ---------------------------------------

                                          0

 Further divide x³  +  x² + x + 1  by x + 1

                      x²  +  1

                    ---------------------

        x + 1 √x³  +  x² + x + 1

                 -(x³  +  x²)

                  ------------------------

                                   x +  1  

                                 -( x  + 1)

                             -----------------

                                      0              

Thus, the factors of  x⁴ + 4x³ + 4x² + 4x + 3 = (x + 3)(x + 1)( x²  +  1)

(ii) Given;

Polynomial, p(x)= 2x⁴ - 5x² - 2

Factor, = x + 1

            x = -1

if (x + 1) is a factor of the polynomial, then p(-1) = 0

p(-1) = 2(-1)⁴  - 5(-1)² - 2

       = 2 - 5 - 2

       = -5

Thus, (x + 1) is not a factor of the given polynomial and the remainder is -5.