Answer:43.1 km/h
Step-by-step explanation:
Suppose velocity of motorist [tex]\vec{v_1}=50\hat{j}[/tex]
The appeared velocity of wind or resultant velocity is [tex]\vec{v_r}=60[\hat{i}\cdot \frac{1}{\sqrt{2}}+\hat{j}\cdot \frac{1}{\sqrt{2}}][/tex]
Suppose the true velocity of wind is [tex]v_2[/tex]
so, [tex]\vec{v_1}+\vec{v_2}=\vec{v_r}[/tex]
[tex]\vec{v_2}=\frac{60}{\sqrt{2}}\hat{i}+(\frac{60}{\sqrt{2}}-50)\hat{j}\\\vec{v_2}=42.42\hat{i}-7.57\hat{j}\\absolute\ velocity=\sqrt{42.42^2+(-7.57)2}=43.09\approx 43.1\ km/h[/tex]