What are the coordinates of the point on the directed line segment from
(-4,-9) to (1, 1) that partitions the segment into a ratio of 3 to 2?

Respuesta :

Answer:

(- 1, - 3 )

Step-by-step explanation:

Given endpoints (x₁, y₁ ) and (x₂, y₂ ) partitioned in the ratio m : n

Then using the Section formula the coordinates of the point are

( [tex]\frac{nx_{1}+mx_{2} }{m+n}[/tex], [tex]\frac{ny_{1}+my_{2} }{m+n}[/tex] )

Here (x₁, y₁ ) = (- 4, - 9), (x₂, y₂ ) = (1, 1) and m : n = 3 : 2 , then

( [tex]\frac{2(-4)+3(1)}{3+2}[/tex] , [tex]\frac{2(-9)+3(1)}{3+2}[/tex] )

= ( [tex]\frac{x}{y} \frac{-8+3}{5}[/tex], [tex]\frac{-18+3}{5}[/tex] )

=  ( [tex]\frac{-5}{5}[/tex], [tex]\frac{-15}{5}[/tex] )

= ( - 1, - 3 )

Answer:

(-1 , -3)

Step-by-step explanation

For unknown reason, I can't save the explanation in this space. It's detailed in the attachment

Ver imagen kenlingdad