Respuesta :

Answer:

[tex](x,y) = (0,1)[/tex]

Step-by-step explanation:

Given

The above table

Required

Determine the coordinates of the y intercept

Represent points on the table as:

[tex](x_1,y_1) = (4,2)[/tex]

[tex](x_2,y_2) = (8,3)[/tex]

First, calculate slope (m):

[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

[tex]m = \frac{3-2}{8 - 4}[/tex]

[tex]m = \frac{1}{4}[/tex]

For y intercept, the following coordinate point exist:

[tex](x_3,y_3) = (0,y)[/tex]

Because x = 0 at y intercept

Calculate the slope as:

[tex]m = \frac{y_3 - y_1}{x_3 - x_1}[/tex]

The equation becomes

[tex]\frac{1}{4} = \frac{y - 2}{0 - 4}[/tex]

[tex]\frac{1}{4} = \frac{y - 2}{- 4}[/tex]

Cross Multiply:

[tex]4(y-2) = -4 * 1[/tex]

Divide through by 4

[tex]y - 2 = -1 * 1[/tex]

[tex]y - 2 = -1[/tex]

Make y the subject:

[tex]y = 2-1[/tex]

[tex]y = 1[/tex]

Hence, the coordinates of the y intercept is:

[tex](x,y) = (0,1)[/tex]