Answer:
[tex](x,y) = (0,1)[/tex]
Step-by-step explanation:
Given
The above table
Required
Determine the coordinates of the y intercept
Represent points on the table as:
[tex](x_1,y_1) = (4,2)[/tex]
[tex](x_2,y_2) = (8,3)[/tex]
First, calculate slope (m):
[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
[tex]m = \frac{3-2}{8 - 4}[/tex]
[tex]m = \frac{1}{4}[/tex]
For y intercept, the following coordinate point exist:
[tex](x_3,y_3) = (0,y)[/tex]
Because x = 0 at y intercept
Calculate the slope as:
[tex]m = \frac{y_3 - y_1}{x_3 - x_1}[/tex]
The equation becomes
[tex]\frac{1}{4} = \frac{y - 2}{0 - 4}[/tex]
[tex]\frac{1}{4} = \frac{y - 2}{- 4}[/tex]
Cross Multiply:
[tex]4(y-2) = -4 * 1[/tex]
Divide through by 4
[tex]y - 2 = -1 * 1[/tex]
[tex]y - 2 = -1[/tex]
Make y the subject:
[tex]y = 2-1[/tex]
[tex]y = 1[/tex]
Hence, the coordinates of the y intercept is:
[tex](x,y) = (0,1)[/tex]