Answer:
[tex]y = - 2.7876 * 10^{28}[/tex]
[tex]x= 3.0199 * 10^{28}[/tex]
Explanation:
Given
[tex]12x+13y=12.01[/tex]
[tex]x+y=2.323 * 10^{27}[/tex]
Required:
Solve
Make x the subject in [tex]x+y=2.323 * 10^{27}[/tex]
[tex]x=2.323 * 10^{27} - y[/tex]
Substitute the above expression for y in [tex]12x+13y=12.01[/tex]
[tex]12(2.323 * 10^{27} - y) + 13y = 12.01[/tex]
Open brackets
[tex]12*2.323 * 10^{27} - 12y + 13y = 12.01[/tex]
[tex]12*2.323 * 10^{27} + y = 12.01[/tex]
Collect Like Terms
[tex]y = 12.01 - 12*2.323 * 10^{27}[/tex]
[tex]y = 12.01 - 2.7876 * 10^{28}[/tex]
12.01 is negligible compared to [tex]2.7876 * 10^{28}[/tex]
So:
[tex]y = - 2.7876 * 10^{28}[/tex]
Substitute the above expression for y in [tex]x=2.323 * 10^{27} - y[/tex]
[tex]x=2.323 * 10^{27} - (- 2.7876 * 10^{28})[/tex]
[tex]x=2.323 * 10^{27} + 2.7876 * 10^{28}[/tex]
[tex]x= 0.2323 * 10^{28} + 2.7876 * 10^{28}[/tex]
[tex]x= 3.0199 * 10^{28}[/tex]