Respuesta :

Answer:

[tex]y = - 2.7876 * 10^{28}[/tex]

[tex]x= 3.0199 * 10^{28}[/tex]

Explanation:

Given

[tex]12x+13y=12.01[/tex]

[tex]x+y=2.323 * 10^{27}[/tex]

Required:

Solve

Make x the subject in [tex]x+y=2.323 * 10^{27}[/tex]

[tex]x=2.323 * 10^{27} - y[/tex]

Substitute the above expression for y in [tex]12x+13y=12.01[/tex]

[tex]12(2.323 * 10^{27} - y) + 13y = 12.01[/tex]

Open brackets

[tex]12*2.323 * 10^{27} - 12y + 13y = 12.01[/tex]

[tex]12*2.323 * 10^{27} + y = 12.01[/tex]

Collect Like Terms

[tex]y = 12.01 - 12*2.323 * 10^{27}[/tex]

[tex]y = 12.01 - 2.7876 * 10^{28}[/tex]

12.01 is negligible compared to [tex]2.7876 * 10^{28}[/tex]

So:

[tex]y = - 2.7876 * 10^{28}[/tex]

Substitute the above expression for y in [tex]x=2.323 * 10^{27} - y[/tex]

[tex]x=2.323 * 10^{27} - (- 2.7876 * 10^{28})[/tex]

[tex]x=2.323 * 10^{27} + 2.7876 * 10^{28}[/tex]

[tex]x= 0.2323 * 10^{28} + 2.7876 * 10^{28}[/tex]

[tex]x= 3.0199 * 10^{28}[/tex]