Respuesta :

Step-by-step explanation:

[tex] \frac{6x - 2}{30} = \frac{5x + 13}{36} \\ 36(6x - 2) = 30(5x + 13) \\ 6(6x - 2) = 5(5x + 13) \\ 36x - 12 = 25x + 65 \\ (36 - 25)x = (65 + 12) \\ 11x = 77 \\ x = \frac{77}{11} \\ x = 7[/tex]

You can use the properties that similar triangles have sides scaled.

The value of x is 7.

Since it is given that PTS ~ PQR, thus, let the scaling is done by factor f. Then we have:

[tex]|PT| = f \times |PQ|\\ |TS| = f \times |QR|\\ |SP| = f \times |RP|[/tex]

Thus, we get the ratio of length of PT and length of TS as:

[tex]\dfrac{|PT|}{|TS|} = \dfrac{f \times |PQ|}{f \times |QR|} = \dfrac{|PQ|}{|QR|}[/tex]

How to find the value x?

Using the values specified in the given figure for above obtained equation, we get:


[tex]\dfrac{|PT|}{|TS|} = \dfrac{|PQ|}{|QR|}\\ \\ \dfrac{36}{30} = \dfrac{5x + 13}{6x-2}\\ \\ \text{Cross multiplying, the denominators},\\\\ 36(6x-2) = 30(5x+13)\\ 216x - 72 = 150x + 390\\ 216x - 150x = 390 + 72\\ 66x = 462\\\\ x = \dfrac{462}{66}\\\\ x = 7[/tex]

Thus, the obtained value of x is 7.

Learn more about similar triangles here:

https://brainly.com/question/19387334