Respuesta :

Answer: [tex]\frac{1}{t^{84} }[/tex]

Step-by-step explanation:

Use the exponent rule that [tex]x^{a}[/tex]·[tex]x^{b}[/tex]=[tex]x^{ab}[/tex] (In other words, because every factor in the expression has a base of t, we can add the exponents):

[tex]t^{0}[/tex]·[tex]t^{-27}[/tex]·[tex]t^{-57}[/tex]=[tex]t^{0+(-27)+(-57)}[/tex]=[tex]t^{-84}[/tex]

To give t a positive exponent, put t in the denominator of a fraction:

[tex]t^{-84} =\frac{1}{t^{84} }[/tex]

Answer:

1/(t^84)

Step-by-step explanation:

t^0 = 1. So that's 1 * t^-27 * t^-57

When you multiply a variable with an exponent, you add the exponents together. So...

t^(-27+-57) = t^(-84)

To get rid of the negative exponent, move it to the denominator. If it helps, imagine it like this...

(t^-84)/1 (anything over 1 equals itself)

And flip it!

1/(t^84)

If the exponent is negative in the denominator, move it to the numerator. It can be a bit more complicated than that, but for this question this solution works.