Respuesta :

Answer:

  • [tex]a_n=n+9[/tex]
  • [tex]a_9=18[/tex]

Step-by-step explanation:

Determining the expression for the sequence:

Given the sequence

10,  11,  12,  13

Here, the first element is:

a₁ = 10

An arithmetic sequence has a constant difference 'd' and is defined by  

[tex]a_n=a_1+\left(n-1\right)d[/tex]

computing the differences of all the adjacent terms

[tex]11-10=1,\:\quad \:12-11=1,\:\quad \:13-12=1[/tex]

The difference between all the adjacent terms is the same and equal to

[tex]d=1[/tex]

now substituting d = 1 and a₁ = 10 in the nth term

[tex]a_n=a_1+\left(n-1\right)d[/tex]

[tex]a_n=\left(n-1\right)+10[/tex]

[tex]a_n=n+9[/tex]

Determining the value of the 9th term

Given the nth term

[tex]a_n=n+9[/tex]

substituting n = 9 to determine the 9th term

[tex]a_9=9+9[/tex]

[tex]a_9=18[/tex]

Therefore, the vale of the 9th term is:

[tex]a_9=18[/tex]