Answer:
Comparing the L.H.S with the R.H.S
Step-by-step explanation:
Given
3 1/2 divided by 2 1/4 = a b/ c
solving the left-hand side of the equation
[tex]3\frac{1}{2}\div \:2\frac{1}{4}[/tex]
Convert mixed numbers to improper fractions
so the expression becomes
[tex]3\frac{1}{2}\:\div 2\frac{1}{4}=\frac{7}{2}\div \:\frac{9}{4}[/tex]
Apply the fraction rule: [tex]\frac{a}{b}\div \frac{c}{d}=\frac{a}{b}\times \frac{d}{c}[/tex]
[tex]=\frac{7}{2}\times \frac{4}{9}[/tex]
Cross cancel the common factor
[tex]=\frac{7}{1}\times \frac{2}{9}[/tex]
Multiply fractions: [tex]\frac{a}{b}\times \frac{c}{d}=\frac{a\:\times \:c}{b\:\times \:d}[/tex]
[tex]=\frac{7\times \:2}{1\times \:9}[/tex]
[tex]=\frac{14}{9}[/tex]
Convert improper fractions to mixed numbers
[tex]=1\frac{5}{9}[/tex]
Thus, the main expression becomes
[tex]\:1\frac{5}{9}=a\frac{b}{c}[/tex]
Thus, comparing the L.H.S with the R.H.S