Respuesta :

Answer:

Comparing the L.H.S with the R.H.S

  • a = 1
  • b = 5
  • c = 9

Step-by-step explanation:

Given

3 1/2 divided by 2 1/4 = a b/ c

solving the left-hand side of the equation

[tex]3\frac{1}{2}\div \:2\frac{1}{4}[/tex]

Convert mixed numbers to improper fractions

  • [tex]3\frac{1}{2}=\frac{7}{2}[/tex]
  • [tex]2\frac{1}{4}=\frac{9}{4}[/tex]

so the expression becomes

[tex]3\frac{1}{2}\:\div 2\frac{1}{4}=\frac{7}{2}\div \:\frac{9}{4}[/tex]

Apply the fraction rule: [tex]\frac{a}{b}\div \frac{c}{d}=\frac{a}{b}\times \frac{d}{c}[/tex]

              [tex]=\frac{7}{2}\times \frac{4}{9}[/tex]

Cross cancel the common factor

                [tex]=\frac{7}{1}\times \frac{2}{9}[/tex]

Multiply fractions: [tex]\frac{a}{b}\times \frac{c}{d}=\frac{a\:\times \:c}{b\:\times \:d}[/tex]

                [tex]=\frac{7\times \:2}{1\times \:9}[/tex]

                 [tex]=\frac{14}{9}[/tex]

Convert improper fractions to mixed numbers

                [tex]=1\frac{5}{9}[/tex]

Thus, the main expression becomes

[tex]\:1\frac{5}{9}=a\frac{b}{c}[/tex]

Thus, comparing the L.H.S with the R.H.S

  • a = 1
  • b = 5
  • c = 9