If m< XYZ= 136, solve for x

Answer:
x = 3
Step-by-step explanation:
We'd apply some properties of rhombus.
m<RZT = (10x - 8)°
m<ZRY = 90° (diagonals bisect at 90°)
m<ZYR = ½(m<XYZ) = ½(136) = 68°
m<RZT + m<ZRY + m<ZYR = 180° (sum of ∆)
(10x - 8) + 90 + 68 = 180
Solve for x
10x - 8 + 90 + 68 = 180
10x + 150 = 180
10x = 180 - 150 (subtraction property of equality)
10x = 30
Divide both sides by 10
x = 3
The value of x is 3
m<RZT = (10x - 8)°
m<ZRY = 90° (diagonals bisect at 90°)
m<ZYR = ½(m<XYZ) = ½(136) = 68°
Now
m<RZT + m<ZRY + m<ZYR = 180° (sum of ∆)
(10x - 8) + 90 + 68 = 180
10x + 150 = 180
10x = 30
x = 3
Learn more: https://brainly.com/question/18269454?referrer=searchResults