Respuesta :

Answer:

[tex]h = \frac{S - 2B}{P}[/tex]

Step-by-step explanation:

Given

[tex]S=Ph + 2B[/tex]

Required

Select an equivalent expression (see attachment)

[tex]S=Ph + 2B[/tex]

Subtract 2B from both sides

[tex]S - 2B = Ph + 2B - 2B[/tex]

[tex]S - 2B = Ph[/tex]

Divide both sides by P

[tex]\frac{S - 2B}{P} = \frac{Ph}{P}[/tex]

[tex]\frac{S - 2B}{P} = h[/tex]

Reorder

[tex]h = \frac{S - 2B}{P}[/tex] --- Option (b)

Ver imagen MrRoyal

The equivalent equation is "[tex]P=\frac{S-2B}{P}[/tex]"

Equation:

[tex]\to S= Ph+2B[/tex]

solving the given equation:

[tex]\to S= Ph+2B\\\\\to S-2B= Ph\\\\\to \frac{S-2B}{P}=P\\\\\to P=\frac{S-2B}{P}\\\\[/tex]

Therefore, the final answer of the given equation is "[tex]P=\frac{S-2B}{P}[/tex]".

Note:

  • Please find the complete question in the attached file.

Find out more information about the equation here:

brainly.com/question/24610422

Ver imagen codiepienagoya