Respuesta :

Answer: g(x) = 0+(-3)x

Step-by-step explanation:

Given Function : g(x)=x−4x

To rewrite the above function g(x) in the form g(x)=c+rx, where c and r are constants.

Consider  g(x)=x−4x = x(1-4)

⇒g(x) = -3x

⇒g(x) = 0+(-3)x

Here c = 0 , r =-3

Hence , the solution is g(x) = 0+(-3)x.

A function can be rewritten in several ways.

[tex]\mathbf{g(x) = x - 4x}[/tex] in form of [tex]\mathbf{g(x) = c + rx}[/tex] is [tex]\mathbf{g(x) = 0 - 3x}[/tex]

The function is given as:

[tex]\mathbf{g(x) = x - 4x}[/tex]

Evaluate like terms

[tex]\mathbf{g(x) = - 3x}[/tex]

Add 0 to the function

[tex]\mathbf{g(x) = 0 - 3x}[/tex]

Rewrite as:

[tex]\mathbf{g(x) = 0 + (- 3x)}[/tex]

Compare the above function to: [tex]\mathbf{g(x) = c + rx}[/tex];

We have:

[tex]\mathbf{c = 0}\\\\\mathbf{r = -3}[/tex]

Hence, [tex]\mathbf{g(x) = x - 4x}[/tex] in form of [tex]\mathbf{g(x) = c + rx}[/tex] is [tex]\mathbf{g(x) = 0 - 3x}[/tex]

Read more about rational functions at:

https://brainly.com/question/12419178