Respuesta :
Answer: g(x) = 0+(-3)x
Step-by-step explanation:
Given Function : g(x)=x−4x
To rewrite the above function g(x) in the form g(x)=c+rx, where c and r are constants.
Consider g(x)=x−4x = x(1-4)
⇒g(x) = -3x
⇒g(x) = 0+(-3)x
Here c = 0 , r =-3
Hence , the solution is g(x) = 0+(-3)x.
A function can be rewritten in several ways.
[tex]\mathbf{g(x) = x - 4x}[/tex] in form of [tex]\mathbf{g(x) = c + rx}[/tex] is [tex]\mathbf{g(x) = 0 - 3x}[/tex]
The function is given as:
[tex]\mathbf{g(x) = x - 4x}[/tex]
Evaluate like terms
[tex]\mathbf{g(x) = - 3x}[/tex]
Add 0 to the function
[tex]\mathbf{g(x) = 0 - 3x}[/tex]
Rewrite as:
[tex]\mathbf{g(x) = 0 + (- 3x)}[/tex]
Compare the above function to: [tex]\mathbf{g(x) = c + rx}[/tex];
We have:
[tex]\mathbf{c = 0}\\\\\mathbf{r = -3}[/tex]
Hence, [tex]\mathbf{g(x) = x - 4x}[/tex] in form of [tex]\mathbf{g(x) = c + rx}[/tex] is [tex]\mathbf{g(x) = 0 - 3x}[/tex]
Read more about rational functions at:
https://brainly.com/question/12419178