contestada

Suppose we want to estimate the average weight of an adult male in Mexico. We draw a random sample of 2,000 men from a population of 3,000,000 men and weigh them. We find that the average person in our sample weighs 200 pounds, and the standard deviation of the sample is 30 pounds. Calculate 94%,98%,96% confidence interval

Respuesta :

Answer:

1.- CI = 94% (  μ₀ -  1,04   <  x   <   μ₀ +  1,04 )

2.- CI = 98 % ( μ₀ - 2,05  <  x   <   μ₀ + 2,05 )

3.- CI = 96 %  (  μ₀ - 1,75  <  x   <   μ₀  + 1,75 )

Step-by-step explanation:

Sample size      n  = 3000000

Sample mean   x  =  200

Standard deviation   s  =  30

From  z-table values of z(c):

CI  94 %        Confidencial level   α = 6 %   α = 0,06   z(c) = 1,55

CI  98 %        Confidencial level   α = 2 %   α = 0,02   z(c) = 2,05

CI  96 %        Confidencial level   α = 4 %   α = 0,04   z(c) =  1,75

MOE = z(c) * σ/√n

1.-MOE =  1,55* 30 / √2000    MOE = 1,04

2.-MOE = 2,05*30/√2000      MOE = 1,38

3.-MOE = 1,75*30/√2000        MOE = 1,17

Then CI

1.-  CI = 94 %     (  μ₀ -  MOE <  x  <   μ₀ -  MOE )

     CI  =  (  μ₀ -  1,04   <  x   <   μ₀ +  1,04 )

2.-CI = 98 %

     CI  = (    μ₀ - 2,05  <  x   <   μ₀ + 2,05 )

3.- CI = 96 %

     CI = (  μ₀ - 1,75  <  x   <   μ₀  + 1,75 )

Using the t-distribution, it is found that:

  • The 94% confidence interval is (198.73, 201.27).
  • The 96% confidence interval is (198.61, 201.39).
  • The 98% confidence interval is (198.43, 201.57).

We are given the standard deviation for the sample, which is why the t-distribution is used to solve this question.

The information given is:

  • Sample mean of [tex]\overline{x} = 200[/tex].
  • Sample standard deviation of [tex]s = 30[/tex].
  • Sample size of [tex]n = 2000[/tex].

The interval is:

[tex]\overline{x} \pm t\frac{s}{\sqrt{n}}[/tex]

  • In which t is the critical value for the two-tailed confidence interval.

Considering a 94% confidence level, using a calculator, with 200 - 1 = 199 df, the critical value is t = 1.8916, hence:

[tex]\overline{x} - t\frac{s}{\sqrt{n}} = 200 - 1.8916\frac{30}{\sqrt{2000}} = 198.73[/tex]

[tex]\overline{x} + t\frac{s}{\sqrt{n}} = 200 + 1.8916\frac{30}{\sqrt{2000}} = 201.27[/tex]

The 94% confidence interval is (198.73, 201.27).

Considering a 96% confidence level, using a calculator, with 200 - 1 = 199 df, the critical value is t = 2.0673, hence:

[tex]\overline{x} - t\frac{s}{\sqrt{n}} = 200 - 2.0673\frac{30}{\sqrt{2000}} = 198.61[/tex]

[tex]\overline{x} + t\frac{s}{\sqrt{n}} = 200 + 2.0673\frac{30}{\sqrt{2000}} = 201.39[/tex]

The 96% confidence interval is (198.61, 201.39).

Considering a 98% confidence level, using a calculator, with 200 - 1 = 199 df, the critical value is t = 2.3452, hence:

[tex]\overline{x} - t\frac{s}{\sqrt{n}} = 200 - 2.3452\frac{30}{\sqrt{2000}} = 198.43[/tex]

[tex]\overline{x} + t\frac{s}{\sqrt{n}} = 200 + 2.3452\frac{30}{\sqrt{2000}} = 201.57[/tex]

The 98% confidence interval is (198.43, 201.57).

You can learn more about the use of the t-distribution to build a confidence interval at https://brainly.com/question/16162795