If the balloon can barely lift an additional 3500 N of passengers, breakfast, and champagne when the outside air density is 1.23 kg/m3, what is the average density of the heated gases in the envelope

Respuesta :

The complete question is :

A hot-air balloon has a volume of 2100 m3 . The balloon fabric (the envelope) weighs 860 N . The basket with gear and full propane tanks weighs 1300 N .

If the balloon can barely lift an additional 3400 N of passengers, breakfast, and champagne when the outside air density is 1.23kg/m3, what is the average density of the heated gases in the envelope?

Solution :

Given volume of the hot air balloon [tex]$=2100 \ m^3$[/tex]

The balloon fabric weights = 860 N

The weight of the basket with the gear and propane tank = 1300 N

Density of outside air [tex]$= 1.23 \ kg/m^3$[/tex]

∴  Total pay load = Weight of the air displaced - weight of gas inside the balloon

Total pay load = 860 + 1300 + 3400

                        = 5560 N

Mass = density x volume

Weight  [tex]$= \text{mass} \times g$[/tex]

Weight = volume x density [tex]$\times \text{ acceleration due to gravity (g)}$[/tex]

Weight of the displaced air = 2100 x 1.23 x 9.8

                                             = 25313 N

Weight of the gas inside the balloon = density [tex]$\times \text{ acceleration due to gravity (g)}$[/tex] x volume

                                                             = density x 9.8 x 2100

                                                             = density x 20580 N

Therefore substituting the values, we get

⇒ 25313 - (density x 20580) = 5560

⇒ density [tex]$=\frac{19753}{20580}$[/tex]

                 [tex]$= 0.96 \ kg/m^3$[/tex]

So the density of the heated gas [tex]$= 0.96 \ kg/m^3$[/tex]