Directions: find the equation of each line in standard form with the given properties:

1. Slope =3, y-intercept=1
2. Passing through (0,2), slope = -4
3. Passing through (-1,3) and (1,1)
4. Passing through (1,3), slope = 1/2
5. Passing through (1/2,1) and (4,2)

Respuesta :

Answer:

Step-by-step explanation:

1) slope = 3 ; y-intercept = 1

y = mx + b

y = 3x + 1

0 = 3x + 1 -y

-1 = 3x - y

ANS: 3x - y = -1

2)   Passing through (0,2), slope = -4

y - y₁ = m(x -x₁)

y - 2 = -4(x - 0)

y - 2 = -4x

4x + y - 2 = 0

Ans: 4x + y = 2

3)Passing through (-1,3) and (1,1)

Slope = [tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]

         [tex]= \frac{1-3}{1-[-1]}\\\\= \frac{-2}{1+1}\\\\= \frac{-2}{2}\\\\= - 1[/tex]

m= -1 ; (-1 , 3)

y - y₁ = m(x -x₁)

y - 3 = (-1)(x - [-1] )

y -3 = (-1)(x +1 )

y - 3 = -x - 1

x +  y -3 = -1

x +y = -1 + 3

Ans: x + y = 2

4) Passing through (1,3), slope = 1/2

y - y₁ = m(x -x₁)

[tex]y - 3 = \frac{1}{2}(x - 1)\\\\y - 3 = \frac{1}{2}x - \frac{1}{2}\\\\[/tex]

Multiply the equation by 2

[tex]2*y - 2*3 = 2*\frac{1}{2}x - 2*\frac{1}{2}\\\\2y - 6 = x - 1\\[/tex]

2y - 6 +1 = x

2y - 5 = x

    -5 = x - 2y

Ans: x - 2y = -5

5)  Passing through (1/2,1) and (4,2)

Slope = [tex]\frac{2-1}{4-\frac{1}{2}}[/tex]

         [tex]= \frac{1}{\frac{7}{2}}\\\\= \frac{2}{7}[/tex]

m = 2/7 ; (4 , 2)

y - y₁ = m(x -x₁)

[tex]y - 2 = \frac{2}{7}(x - 4)\\\\7y - 7*2 = 7*\frac{2}{7}(x - 4)\\\\7y - 14 = 2(x -4)\\\\7y - 14 = 2x - 8\\\\[/tex]

7y - 14 + 8 = 2x

7y - 6 = 2x

Ans:  2x - 7y = -6