Respuesta :

Answer:

[tex]\huge\boxed{f^{-1}(x)=4x+48}[/tex]

Step-by-step explanation:

In order to find the inverse of a function, we need to follow a couple of steps.

  • Step 1: Write the function as [tex]y=mx+b[/tex]
  • Step 2: Swap all x and y values
  • Step 3: Solve for y
  • Step 4: Replace y with [tex]f^{-1}(x)[/tex]

We can follow these steps to find the inverse of this function.

Step 1: We can just replace the f(x) with y, making our function [tex]y=\frac{1}{4}x-12[/tex].

Step 2: We can swap where the x and y values are, making our equation

[tex]x = \frac{1}{4}y-12[/tex]

Step 3: We can now solve for y.

  • [tex]x = \frac{1}{4}y-12[/tex]
  • [tex]x + 12 = \frac{1}{4}x[/tex]
  • [tex]4x+48 =y[/tex]

We now have the function as [tex]y = 4x+48[/tex].

Step 4: We can now replace the y with [tex]f^{-1}(x)[/tex].

[tex]f^{-1}(x) =4x+48[/tex]

Therefore the inverse of [tex]f(x) = \frac{1}{4}x-12[/tex] is [tex]f^{-1}(x) =4x+48[/tex].

Hope this helped!