Respuesta :

Answer:

We check to verify that the step [tex]\frac{x^{-3}y^{-12}}{x^{15}y^{-15}}[/tex] is included in simplifying the expression.

Thus, option D is correct.

Step-by-step explanation:

Given the expression

[tex]\left(\frac{xy^4}{x^{-5}y^5}\right)^{-3}[/tex]

[tex]\mathrm{Apply\:exponent\:rule}:\quad \left(\frac{a}{b}\right)^c=\frac{a^c}{b^c}[/tex]

[tex]=\frac{x^{-3}y^{-12}}{x^{15}y^{-15}}[/tex]             ← This is the step

Thus, the step [tex]\frac{x^{-3}y^{-12}}{x^{15}y^{-15}}[/tex] is included in simplifying the expression.

Thus, option D is correct.

BONUS!

LET US SOLVE THE REMAINING

  [tex]=\frac{x^{-3}y^{-12}}{x^{15}y^{-15}}[/tex]

[tex]\mathrm{Apply\:exponent\:rule}:\quad \frac{x^a}{x^b}=\frac{1}{x^{b-a}}[/tex]

  [tex]=\frac{y^{-12}}{y^{-15}x^{15-\left(-3\right)}}[/tex]

[tex]\mathrm{Apply\:exponent\:rule}:\quad \frac{x^a}{x^b}=x^{a-b}[/tex]

  [tex]=\frac{y^{-12-\left(-15\right)}}{x^{18}}[/tex]

  [tex]=\frac{y^3}{x^{18}}[/tex]

From the above calculations, we check to verify that the step [tex]\frac{x^{-3}y^{-12}}{x^{15}y^{-15}}[/tex] is included in simplifying the expression.

Thus, option D is correct.