Ari6363
contestada

Which function does the graph represent?
Of(x) = (x - 2)2 + 3
Of(x) = -(x - 2)2 + 3
Of(x) = (x + 2)2 + 3
O f(x) = -(x + 2)2 + 3

Which function does the graph represent Ofx x 22 3 Ofx x 22 3 Ofx x 22 3 O fx x 22 3 class=

Respuesta :

Answer:

The function which represents the graph is:

[tex]y=-\left(x\:-\:2\right)^2+\:3[/tex]

Hence, option  B is correct.

The graph is also attached.

Step-by-step explanation:

From the graph, it is clear that:

The vertex = (2, 3)

The y-intercept = (0, -1)

Let us check the equation

[tex]y=-\left(x\:-\:2\right)^2+\:3[/tex]

Determining the y-intercept:

The value of the y-intercept can be determined by setting x = 0, and determining the corresponding value of y.

substituting x = 0 in teh equation

[tex]y=-\left(x\:-\:2\right)^2+\:3[/tex]

[tex]y=-\left(0\:-\:2\right)^2+\:3[/tex]

[tex]y=-2^2+3[/tex]

[tex]y=-4+3[/tex]

[tex]y=-1[/tex]

Thus,

The point representing the y-intercept is:  (0, -1)

Determining the vertex:

The vertex of an up-down facing parabola of the form ax² + bx + c is:

[tex]x_v=-\frac{b}{2a}[/tex]

As the equation is

[tex]y=-\left(x\:-\:2\right)^2+\:3[/tex]

Rewriting the equation [tex]y=-\left(x\:-\:2\right)^2+\:3[/tex] in the form ax² + bx + c:

[tex]y=-x^2+4x-1[/tex]

The Parabola params are:

[tex]a=-1,\:b=4,\:c=-1[/tex]

Thus,

[tex]x_v=-\frac{b}{2a}[/tex]

[tex]x_v=-\frac{4}{2\left(-1\right)}[/tex]

[tex]x_v=2[/tex]

Now plug in [tex]x_v=2[/tex] in the equation to find [tex]y_v[/tex]

[tex]y_v=-x^2+4x-1[/tex]

[tex]\:y_v=-\left(2\right)^2+4\left(2\right)-1[/tex]

[tex]y_v=-4+8-1[/tex]

[tex]y_v=3[/tex]

Therefore, the vertex of the equation is:  (2, 3)

Hence, the function which represents the graph is:

[tex]y=-\left(x\:-\:2\right)^2+\:3[/tex]

Hence, option  B is correct.

The graph is also attached.

Ver imagen absor201