What is the length of Ac? Round to the nearest tenth.

Given:
The figure of a right angle triangle.
To find:
The length of the line segment AC.
Solution:
In a right angle triangle,
[tex]\tan \theta=\dfrac{Opposite}{Adjacent}[/tex]
In the given right triangle ABC,
[tex]\tan (A)=\dfrac{BC}{AC}[/tex]
[tex]\tan (55^\circ)=\dfrac{BC}{AC}[/tex]
[tex]\tan (55^\circ)=\dfrac{15}{AC}[/tex]
[tex]AC=\dfrac{15}{\tan (55^\circ)}[/tex]
On further simplification, we get
[tex]AC=\dfrac{15}{1.428148}[/tex]
[tex]AC=10.503113[/tex]
[tex]AC\approx 10.5[/tex]
The length of side AC is equal to 10.5 m .
Therefore, the correct option is A.