Respuesta :

Answer:

3--1/-2-4=4/-6=2/-3

y=-2/3x+b

-2*-2/3=4/3

3-4/3=5/3

y=-2/3x+5/3

Step-by-step explanation:

Answer:

[tex]\displaystyle y=-\frac{2}{3}x+\frac{5}{3}[/tex]

Step-by-step explanation:

We want to find the equation of the line that passes through the two points:

(4, -1) and (-2, 3).

First, we will find the slope of the two points. So:

[tex]\displaystyle m=\frac{3-(-1)}{-2-4}=\frac{4}{-6}=-\frac{2}{3}[/tex]

Now, we will use the point-slope form given by:

[tex]y-y_1=m(x-x_1)[/tex]

Use either point. I'm going to use (4, -1). So, substitute:

[tex]\displaystyle y-(-1)=-\frac{2}{3}(x-(4))[/tex]

Simplify and distribute:

[tex]\displaystyle y+1=-\frac{2}{3}x+\frac{8}{3}[/tex]

Subtract 1 from both sides. Therefore:

[tex]\displaystyle y=-\frac{2}{3}x+\frac{5}{3}[/tex]