Respuesta :

Answer:

Table C

Step-by-step explanation:

Given

Table A to D

Required

Which shows a proportional relationship

To do this, we make use of:

[tex]k = \frac{y}{x}[/tex]

Where k is the constant of proportionality.

In table (A)

x = 2, y = 4

[tex]k = \frac{y}{x}[/tex]

[tex]k = \frac{4}{2}[/tex]

[tex]k = 2[/tex]

x = 4, y = 9

[tex]k = \frac{y}{x}[/tex]

[tex]k = \frac{9}{4}[/tex]

[tex]k = 2.25[/tex]

Both values of k are different. Hence, no proportional relationship

In table (B)

x = 3, y = 4

[tex]k = \frac{y}{x}[/tex]

[tex]k = \frac{4}{3}[/tex]

[tex]k = 1.33[/tex]

x = 9, y = 16

[tex]k = \frac{y}{x}[/tex]

[tex]k = \frac{16}{9}[/tex]

[tex]k = 1.78[/tex]

Both values of k are different. Hence, no proportional relationship

In table (C):

x = 4, y = 12

[tex]k = \frac{y}{x}[/tex]

[tex]k = \frac{12}{4}[/tex]

[tex]k = 3[/tex]

x = 5, y = 15

[tex]k = \frac{y}{x}[/tex]

[tex]k = \frac{15}{5}[/tex]

[tex]k = 3[/tex]

x = 6, y = 18

[tex]k = \frac{y}{x}[/tex]

[tex]k = \frac{18}{6}[/tex]

[tex]k = 3[/tex]

This shows a proportional relationship because all values of k are the same for this table