Answer:
[tex]8.2 * 10^{-3}[/tex] is the greatest
2000 times greater
Step-by-step explanation:
Given
[tex]8.2 * 10^{-3}[/tex]
[tex]5.2 * 10^{-6}[/tex]
[tex]4.1 * 10^{-6}[/tex]
Solving (a): The greatest of the numbers
First, we convert them to decimals:
[tex]8.2 * 10^{-3} = 0.0082[/tex]
[tex]5.2 * 10^{-6} = 0.0000052[/tex]
[tex]4.1 * 10^{-6} = 0.0000041[/tex]
By comparing the decimal numbers, the highest is: 0.0082.
Hence,
[tex]8.2 * 10^{-3}[/tex] is the greatest
Solving (b): How many times greater than the smallest
In (a) above:
The greatest is: [tex]8.2 * 10^{-3}[/tex]
By comparing the decimal numbers,
The smallest is: 0.0000041 i.e. [tex]4.1 * 10^{-6}[/tex]
The number of times the greatest is greater than the smallest is:
[tex]Number = \frac{8.2 * 10^{-3}}{4.1 * 10^{-6}}[/tex]
[tex]Number = \frac{0.0082}{0.0000041}[/tex]
[tex]Number = 2000[/tex]
Hence, it is 2000 times greater