Answer:
[tex]P(E) = 26 \%[/tex]
Step-by-step explanation:
Given
[tex]P(F) = 46\%[/tex]
[tex]P(E\ and\ F) = 10\%[/tex]
[tex]P(E\ or\ F) = 62\%[/tex]
Required
Find P(E)
In probability:
[tex]P(E\ and\ F) = P(E) + P(F) - p(E\ or\ F)[/tex]
Substitute the right values
[tex]10\% = P(E) + 46\% - 62\%[/tex]
[tex]10\% = P(E) -16 \%[/tex]
Collect Like Terms
[tex]P(E) = 10\% +16 \%[/tex]
[tex]P(E) = 26 \%[/tex]
It is a probability because all probabilities are within the range 0 to 100%