Respuesta :

Answer:

[tex]T_n = -48* (-\frac{1}{2})^{n}[/tex]

Step-by-step explanation:

Given

[tex]24, -12, 6,...[/tex]

Required

Write a formula

The above sequence shows a geometric sequence because:

[tex]r = \frac{-12}{24} = \frac{6}{-12} = -\frac{1}{2}[/tex] -- common ratio

The equation is determined using:

[tex]T_n = ar^{n-1}[/tex]

Where

[tex]a = 24[/tex]

Substitute values for a and r

[tex]T_n = 24* (-\frac{1}{2})^{n-1}[/tex]

Apply law of indices:

[tex]T_n = 24* (-\frac{1}{2})^{n} * (-\frac{1}{2})^{-1}[/tex]

[tex]T_n = 24* (-\frac{1}{2})^{n} * 1/(-\frac{1}{2})[/tex]

[tex]T_n = 24* (-\frac{1}{2})^{n} * 1*-2[/tex]

[tex]T_n = 1*-2*24* (-\frac{1}{2})^{n}[/tex]

[tex]T_n = -48* (-\frac{1}{2})^{n}[/tex]

The above represents the explicit formula