If ΔFGH ~ ΔKJH, find x.

Answer:
x = 16
Explanation:
Since ΔFGH and ΔKJH are similar, let's compare their sides.
So that;
[tex]\frac{GH}{HJ}[/tex] = [tex]\frac{FH}{HK}[/tex]
[tex]\frac{x +8}{32}[/tex] = [tex]\frac{4x-25}{52}[/tex]
cross multiply to have;
32(4x - 25) = 52(x + 8)
128x - 800 = 52x + 416
128x - 52x = 416 + 800
76x = 1216
x = [tex]\frac{1216}{76}[/tex]
= 16
x = 16
Therefore, x = 16.