Respuesta :

Answer: [tex]12*\sqrt{2}[/tex]

Step-by-step explanation:

We have the equation:

[tex]\frac{14}{\sqrt{2} } + \sqrt{50}[/tex]

we know that:

14*14 = 196

then:

14 = √196

[tex]\frac{\sqrt{196} }{\sqrt{2} } + \sqrt{50} = \sqrt{196/2} + \sqrt{50} = \sqrt{98} + \sqrt{50}[/tex]

Now, we can rewrite:

50 = 2*25

98 = 2*49

This is because we know that 49 and 25 are perfect squares, then:

[tex]\sqrt{98} + \sqrt{50} = \sqrt{2*49} +\sqrt{2*25} = \sqrt{2} *\sqrt{49} + \sqrt{2} *\sqrt{25}[/tex]

Now we can use the common factor √2 and get:

[tex]\sqrt{2} *\sqrt{49} + \sqrt{2} *\sqrt{25} = \sqrt{2}*(\sqrt{49} + \sqrt{25} )[/tex]

and we know that:

7*7 = 49

5*5 = 25

then:

[tex]\sqrt{2}*(\sqrt{49} + \sqrt{25} ) = \sqrt{2}*(7 + 5) = 12*\sqrt{2}[/tex]

the value of b is:

b = 12