The scatter plot shows the average heights of children up to age 5.

Part A
Drag numbers to complete an equation for the trend line. Numbers may be used once, more than once, or not at all.

(22, 2.5, 18, 32, 4.5)

y = ?x + ?

Part B
Using the linear equation, predict the average height for a two-year old.

A. 15 inches
B. 22 inches
C. 31 inches
D. 35 inches​

Respuesta :

Answer:

(a) [tex]y = 4.5x + 22[/tex] -- The equation

(b) 31 inches

Step-by-step explanation:

Given

See attachment

Solving (a): The equation of the trend line.

We start  by calculating the slope (m)

[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

Where

[tex](x_1,y_1) = (0,22)[/tex]

[tex](x_2,y_2) = (4,40)[/tex]

So, we have:

[tex]m = \frac{40 - 22}{4 - 0}[/tex]

[tex]m = \frac{18}{4}[/tex]

[tex]m = 4.5[/tex]

The equation is then calculated using:

[tex]y = m(x-x_1)+y_1[/tex]

Where:

[tex](x_1,y_1) = (0,22)[/tex]

[tex]m = 4.5[/tex]

[tex]y = 4.5(x - 0) + 22[/tex]

Open bracket

[tex]y = 4.5x - 0 + 22[/tex]

[tex]y = 4.5x + 22[/tex]

(b) The height of a 2 year old.

To do this, we substitute 2 for x in [tex]y = 4.5x + 22[/tex]

[tex]y = 4.5 * 2 + 22[/tex]

[tex]y = 9+ 22[/tex]

[tex]y = 31[/tex]

The prediction is 31 inches

Ver imagen MrRoyal