Answer:
The answer is "[tex]w'= \frac{w}{4}[/tex]"
Explanation:
According to the work-energy theorem:
work = changes in the potential energy
[tex]w= \frac{1}{2} K S^2-0\\\\w= \frac{1}{2} K S^2. . . . . . . . . . . (1) \\\\w'= \frac{1}{2} K \frac{S^2}{2} -0\\\\w'= \frac{1}{2} K (\frac{S}{2})^2\\\\ w'= \frac{1}{2} K \frac{S^2}{4} . . . . . . . . . . . (2) \\\\[/tex]
by putting the w value in equation 2. so, the value is:
[tex]\boxed{w'= \frac{w}{4}}[/tex]