Respuesta :

Answer:

[tex]P = 22.75[/tex]

Step-by-step explanation:

Given:

See attachment for rectangle LINT

Required

Calculate its perimeter

From the attachment:

Considering triangle LYT, we apply Pythagoras theorem.

[tex]LT^2 = LY^2 + TY^2[/tex]

Where:

[tex]LY = 5.2[/tex]

[tex]TY = 3.9[/tex]

The formula becomes:

[tex]LT^2 = 5.2^2 + 3.9^2[/tex]

[tex]LT^2 = 42.25[/tex]

Take positive square root of both sides

[tex]LT = \sqrt{42.25[/tex]

[tex]LT = 6.5[/tex]

Next, we calculate the length of NT.

By comparing triangles LYT and NYT

We make use of the following equivalent ratios to solve for NT

[tex]NT:TY = LT:LY[/tex]

[tex]NT : 3.9 = 6.5 : 5.2[/tex]

Convert to fractions

[tex]\frac{NT}{3.9} = \frac{6.5}{5.2}[/tex]

Make NT, the subject:

[tex]NT = \frac{6.5}{5.2}*3.9[/tex]

[tex]NT = \frac{6.5*3.9}{5.2}[/tex]

[tex]NT = \frac{25.35}{5.2}[/tex]

[tex]NT = 4.875[/tex]

The perimeter (P) is then calculated as:

[tex]P = NT + LT + LI + NI[/tex]

Where

[tex]NT = LI[/tex] and [tex]LT = NI[/tex] -- opposite sides of rectangle.

So:

[tex]P = NT + NT + LT + LT[/tex]

[tex]P = 2NT + 2LT[/tex]

Substitute values for NT and LT

[tex]P = 2*4.875 + 2*6.5[/tex]

[tex]P = 9.75 + 13.0[/tex]

[tex]P = 22.75[/tex]

Hence, the perimeter is 22.75 units

Ver imagen MrRoyal