Respuesta :

Answer:

[tex]\frac{dy}{dt}[/tex] = 8

Step-by-step explanation:

Given:

x = x(t) and y = y(t)

Let y = x² + 6

By differentiating the given equation with respect to t,

[tex]\frac{dy}{dt}=\frac{d}{dt}(x^{2}+6)[/tex]

[tex]\frac{dy}{dt}=\frac{d}{dt}(x^{2})+\frac{d}{dt}(6)[/tex]

Since, [tex]\frac{dx}{dt}=4[/tex] when x = 1

[tex]\frac{dy}{dt}=2x\frac{dx}{dt}+\frac{d}{dt}(6)[/tex]

[tex]\frac{dy}{dt}=2(1)(4)+0[/tex] [By substituting the values of [tex]\frac{dx}{dt}[/tex] and x = 1]

[tex]\frac{dy}{dt}[/tex] = 8