Answer:
[tex]P(B') = 0.77[/tex]
Step-by-step explanation:
Given
[tex]P(A) = 0.23[/tex]
[tex]P(A\ n\ B) = 0.12[/tex]
[tex]P(A\ u\ B) = 0.34[/tex]
Required
Find P(B')
First, we calculate P(B).
We have:
[tex]P(A\ n\ B) = P(A) + P(B) - P(A\ u\ B)[/tex]
Substitute values
[tex]0.12 = 0.23 + P(B) - 0.34[/tex]
[tex]0.12 = 0.23 - 0.34 + P(B)[/tex]
Collect like terms
[tex]P(B) = 0.12 - 0.23 + 0.34[/tex]
[tex]P(B) = 0.23[/tex]
P(B') is then calculated as:
[tex]P(B') = 1 - P(B)[/tex]
[tex]P(B') = 1 -0.23[/tex]
[tex]P(B') = 0.77[/tex]