Find the equation of a line with the given information:
f(- 6) = 8 and f( - 8) = – 1.
Wrote answer in point slope form

Respuesta :

Answer:

[tex]y -8= \frac{9}{2}(x +6)[/tex]

Step-by-step explanation:

Given

[tex]f(-6) = 8[/tex]

[tex]f(-8) = -2[/tex]

Required

Determine the equation in point-slope form

The general function notation is:

[tex]f(x) = y[/tex]

So, in  [tex]f(-6) = 8[/tex]

[tex](x_1,y_1) = (-6,8)[/tex]

[tex]f(-8) = -1[/tex]

[tex](x_2,y_2) = (-8,-1)[/tex]

Calculate the slope (m)

[tex]m = \frac{y_2 - y_1}{x_2-x_1}[/tex]

[tex]m = \frac{-1-8}{-8-(-6)}[/tex]

[tex]m = \frac{-1-8}{-8+6}[/tex]

[tex]m = \frac{-9}{-2}[/tex]

[tex]m = \frac{9}{2}[/tex]

The equation is then calculated as:

[tex]y -y_1= m(x-x_1)[/tex]

[tex]y -8= \frac{9}{2}(x - (-6))[/tex]

[tex]y -8= \frac{9}{2}(x +6)[/tex]