Respuesta :

Given:

[tex]\overline{AE}\cong \overline{DE}, \overline{AB}\cong \overline{DC}[/tex]

To prove:

[tex]\Delta ABE\cong \Delta DCE[/tex]

Solution:

In triangle AED,

[tex]\overline{AE}\cong \overline{DE}[/tex]

Two sides of triangle AED are equal, it means triangle AED is an isosceles triangle. The base angles of an isosceles triangle are equal. So,

[tex]\angle A\cong \angle D[/tex]

In triangle ABE and triangle DCE,

[tex]\overline{AE}\cong \overline{DE}[/tex]         (Given)

[tex]\angle A\cong \angle D[/tex]        (Base angles of an isosceles triangle are equal)

[tex]\overline{AB}\cong \overline{DC}[/tex]        (Given)

Two corresponding sides and their included angles are congruent. So, triangles are congruent by SAS postulate of congruence.

[tex]\Delta ABE\cong \Delta DCE[/tex]           (By SAS postulate of congruence)

Hence proved.