Respuesta :

Given:

The expression is

[tex]\dfrac{2}{a-2}-\dfrac{8}{a^2-4}[/tex]

To find:

The simplified form of the given expression.

Solution:

We have,

[tex]\dfrac{2}{a-2}-\dfrac{8}{a^2-4}[/tex]

It can be written as

[tex]=\dfrac{2}{a-2}-\dfrac{8}{a^2-2^2}[/tex]

[tex]=\dfrac{2}{a-2}-\dfrac{8}{(a-2)(a+2)}[/tex]            [tex][\because a^2-b^2=(a-b)(a+b)][/tex]

Taking LCM, we get

[tex]=\dfrac{2(a+2)-8}{(a-2)(a+2)}[/tex]

[tex]=\dfrac{2a+4-8}{(a-2)(a+2)}[/tex]

[tex]=\dfrac{2a-4}{(a-2)(a+2)}[/tex]

[tex]=\dfrac{2(a-2)}{(a-2)(a+2)}[/tex]

Cancel out the common factors.

[tex]=\dfrac{2}{a+2}[/tex]

Therefore, the simplified form of the given expression is [tex]\dfrac{2}{a+2}[/tex].