If a1=1 and an+1=ann+2 for n≥1, determine a1,a2,a3, and a4

Answer:
a1 =1
a2= 1/3
a3= 1/12
a4 = 1/60
Step-by-step explanation:
a(n+1) = an/(n+2)
if n=1
a(1+1)= a1/(1+2)
a2= a1/3
a2= 1/3
if n=2
a(2+1)= a2/(2+2)
a3= a2/4 = a2 × 1/4
a3= 1/3 × 1/4 = 1/12
if n=3
a(3+1)= a3/(3+2)
a4= a3/5 = a3 × 1/5
a4= 1/12 × 1/5 = 1/60
The value of [tex]\rm a_{1}, \rm a_{2}, \rm a_{3}, \rm a_{4}[/tex] for a given expression [tex]\rm a_{n+1} = {\frac {a_{n}} {n+2}[/tex] is 1, 1/3, 1/12, and 1/60.
We have given [tex]\rm a_{1} =1[/tex] and [tex]\rm a_{n+1} = {\frac {a_{n}} {n+2}[/tex] for n≥1 we need to determine the value of [tex]\rm a_{1}, \rm a_{2}, \rm a_{3}, \rm a_{4}[/tex] .
To solve for n terms, we will substitute the value of n = 1,2,3,4 and so on sequence-wise in the given expression.
if n = 1
[tex]\rm a_{1+1} = {\frac {a_{1}} {1+2}[/tex]
[tex]\rm a_{2} = {\frac {a_{1}} {3}}\\\rm a_{2} = {\frac{1} {3}[/tex]
if n = 2
[tex]\rm a_{2+1} = {\frac {a_{2}} {2+2}}\\\rm a_{3} = {\frac {1/3} {4}}\\\rm a_{3} = 1/12[/tex]
if n = 3
[tex]\rm a_{3+1} = {\frac {a_{3}} {3+2}}\\\rm a_{4} = {\frac {a_{3}} {5}}\\\rm a_{4} = 1/12 \times 1/5\\\rm a_{4} = 1/60[/tex]
So, the value of [tex]\rm a_{1}, \rm a_{2}, \rm a_{3}, \rm a_{4}[/tex] is 1, 1/3, 1/12, and 1/60.
Learn more about the substitution of values here:
https://brainly.com/question/20052796