The volume of the rectangular prism to the left is represented by the equation V = x ^ 4 + 11x ^ 3 + 34x ^ 2 + 5x - 75 Using what you know about these shapes, whose volumes are calculated using the formula V = lwh find the expression that represents the height (h). Length = x+5, Width = x+3

Respuesta :

Answer:

[tex]h = x^2+3x-5[/tex]

Step-by-step explanation:

Given

[tex]V = x^4 + 11x^3 + 34x^2 + 5x - 75[/tex]

[tex]L = x + 5[/tex]

[tex]W = x + 3[/tex]

Required

Determine the height (h) of the prism

Volume is calculated as:

[tex]V =lwh[/tex]

Substitute values for V, l and w

[tex]x^4 + 11x^3 + 34x^2 + 5x - 75 = (x + 5) * (x + 3) * h[/tex]

Factorize the expression on the left-hand side

[tex](x+3)(x^3+8x^2+10x-25)= (x + 5) * (x + 3) * h[/tex]

Further, factorize:

[tex](x+3)(x+5)(x^2+3x-5)= (x + 5) * (x + 3) * h[/tex]

Divide both sides by (x+3)(x+5)

[tex]\frac{(x+3)(x+5)(x^2+3x-5)}{(x+3)(x+5)}= \frac{(x + 5) * (x + 3) * h}{(x+3)(x+5)}[/tex]

[tex]\frac{(x+3)(x+5)(x^2+3x-5)}{(x+3)(x+5)}= h[/tex]

[tex](x^2+3x-5)= h[/tex]

[tex]x^2+3x-5= h[/tex]

[tex]h = x^2+3x-5[/tex]

The height of the prism is [tex]x^2+3x-5[/tex]