The midpoint of AD is C. The midpoint of AC is B. If A is at (-10,4) and D is at (2,12), find the coordinates of B. Group of answer choices (-5,5) (-4,8) (-2.5,9) (7,6)

Respuesta :

Answer:

[tex]B(x,y) =(-7,6)[/tex]

Step-by-step explanation:

Given

[tex]A = (-10,4)[/tex]

[tex]D = (2,12)[/tex]

Required

Determine the coordinates of B

C is the midpoint of AD. So, we calculate the coordinates of C, first.

[tex]C(x,y) = (\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]

Where:

[tex]A = (-10,4)[/tex] --- [tex](x_1,y_1)[/tex]

[tex]D = (2,12)[/tex] --- [tex](x_2,y_2)[/tex]

So, we have:

[tex]C(x,y) = (\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]

[tex]C(x,y) = (\frac{-10+2}{2},\frac{4+12}{2})[/tex]

[tex]C(x,y) = (\frac{-8}{2},\frac{16}{2})[/tex]

[tex]C(x,y) = (-4,8)[/tex]

So, the coordinates of C is (-4,8)

The midpoint of AC is B.

So, we calculate the coordinates of B using:

[tex]B(x,y) = (\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]

Where:

[tex]A = (-10,4)[/tex] --- [tex](x_1,y_1)[/tex]

[tex]C(x,y) = (-4,8)[/tex] --- [tex](x_2,y_2)[/tex]

So, we have:

[tex]B(x,y) = (\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]

[tex]B(x,y) =(\frac{-10-4}{2},\frac{4+8}{2})[/tex]

[tex]B(x,y) =(\frac{-14}{2},\frac{12}{2})[/tex]

[tex]B(x,y) =(-7,6)[/tex]

Hence, the coordinates of B is (-7,6)

None of the options is correct.