Respuesta :

Answer:

There is a dilation and the scale factor is 4

Step-by-step explanation:

The details that complete the question are:

△ABC

A(2, 5), B(6, 10), C(9, −1)

△A′B′C′

A′(0.5, 1.25), B′(1.5, 2.5), C′(2.25, −0.25)

Checking if there is dilation or not

To do this, we make use of the following scale factor (k) formula:

[tex]k = \frac{Original}{Image}[/tex]

Using A and A'

[tex]k = \frac{A}{A'}[/tex]

[tex]k = \frac{(2,5)}{(0.5,1.25)}[/tex]

Factorize the numerator

[tex]k = \frac{4(0.5,1.25)}{(0.5,1.25)}[/tex]

[tex]k = 4*\frac{(0.5,1.25)}{(0.5,1.25)}[/tex]

[tex]k = 4 * 1[/tex]

[tex]k =4[/tex]

Using B and B'

[tex]k = \frac{B}{B'}[/tex]

[tex]k = \frac{(6,10)}{(1.5, 2.5)}[/tex]

Factorize the numerator

[tex]k = \frac{4(1.5, 2.5)}{(1.5, 2.5)}[/tex]

[tex]k = 4*\frac{(1.5, 2.5)}{(1.5, 2.5)}[/tex]

[tex]k = 4 * 1[/tex]

[tex]k =4[/tex]

Using C and C'

[tex]k = \frac{C}{C'}[/tex]

[tex]k = \frac{(9, -1)}{(2.25, -0.25)}[/tex]

Factorize the numerator

[tex]k = \frac{4(2.25, -0.25)}{(2.25, -0.25)}[/tex]

[tex]k = 4*\frac{(2.25, -0.25)}{(2.25, -0.25)}[/tex]

[tex]k = 4*\frac{(2.25, -0.25)}{(2.25, -0.25)}[/tex]

[tex]k = 4 * 1[/tex]

[tex]k =4[/tex]

The above shows that k is 4 in all cases.

Hence, there is a dilation and the scale factor is 4

Otras preguntas