In the adjoining figure, XY = XZ . YQ and ZP are the bisectors of [tex] \angle[/tex] XYZ and [tex] \angle[/tex] XZY respectively. Prove that YQ = ZP.
~Thanks in advance ! ♡

In the adjoining figure XY XZ YQ and ZP are the bisectors of tex angletex XYZ and tex angletex XZY respectively Prove that YQ ZPThanks in advance class=

Respuesta :

Answer:

See Below.

Step-by-step explanation:

Statements:                                              Reasons:

[tex]1)\, XY=XZ[/tex]                                              Given

[tex]2) \text{ $ m\angle Y= m\angle Z$}[/tex]                                        Isosceles Triangle Theorem

[tex]\displaystyle 3) \text{ $m\angle Y=m\angle XYQ + \angle QYZ$}[/tex]                  Angle Addition

[tex]\displaystyle 4)\text{ $YQ$ bisects $\angle XYZ$}[/tex]                               Given

[tex]5) \text{ $m\angle XYQ=m\angle QYZ$}[/tex]                           Definition of Bisector

[tex]\displaystyle 6)\text{ $m\angle Y=2m\angle QYZ$}[/tex]                               Substitution

[tex]7)\text{ $m\angle Z=m\angle XZP+m\angle PZY$}[/tex]              Angle Addition

[tex]8)\text{ $ZP$ bisects $\angle XZY$}[/tex]                              Given

[tex]\displaystyle 9) \text{ $m\angle XZP=m\angle PZY$ }[/tex]                          Definition of Bisector

[tex]\displaystyle 10) \text{ $ m\angle Z = 2m\angle PZY $}[/tex]                            Substitution

[tex]11)\text{ } 2m\angle QYZ=2m\angle PZY[/tex]                    Substitution

[tex]12)\text{ }m\angle QYZ=m\angle PZY[/tex]                        Division Property of Equality

[tex]13)\text{ } YZ=YZ[/tex]                                         Reflexive Property

[tex]14)\text{ } \Delta YZP\cong\Delta ZYQ[/tex]                             Angle-Side-Angle Congruence*

[tex]15)\text{ } YQ=ZP[/tex]                                         CPCTC

*For clarification:

∠Y = ∠Z

YZ = YZ (or ZY)

∠PZY = ∠QYZ

So, Angle-Side-Angle Congruence:

ΔYZP is congruent to ΔZYQ

Answer:

this is your answer. look at this once.

Ver imagen Аноним